Characterization of D-Aspartate Receptor Currents in Aplysia californica

نویسندگان

  • Stephen Lee Carlson
  • Stephen L. Carlson
  • Terri A. Scandura
چکیده

of a dissertation at the University of Miami. Dissertation supervised by Professor Lynne Fieber. No. of pages in text. (92) D-Aspartate (D-Asp) is an endogenous compound found in the central nervous system (CNS) of a variety of organisms. Despite its prevalence, however, relatively little understood of its physiological role. The prevailing theory is that D-Asp is an alternate agonist of N-methyl-D-aspartate receptor (NMDAR) channels. The goal of this work was to characterize the currents activated by D-Asp in neurons Aplysia californica, focusing on cells of the buccal S cluster (BSC). First, a general electrophysiological characterization was carried out, examining ion permeability, agonist dose-response, and the kinetics of activation, inactivation, and desensitization. D-Asp activated non-specific cation currents characterized by permeability to Na + and K + Next, select antagonists were used in an effort to pharmacologically characterize D-Asp receptor channels. These experiments suggested that D-Asp whole cell currents may be characterized by activation of multiple receptor sites, including NMDARS,. D-Asp-induced currents shared similar current-voltage relationships and time courses of activation and inactivation with L-glutamate (L-Glu)-induced currents. D-Asp currents, however, were subject to prolonged desensitization. Additionally, D-Asp activated currents independently of L-Glu, the known agonist of NMDAR channels, suggesting a non-NMDAR-dependent role of D-Asp. excitatory amino acid transporters (EAATs), and a putative non-L-Glu D-Asp receptor. Furthermore, bath-applied D-Asp attenuated L-Glu-activated currents. Finally, D-Asp currents were compared to those evoked by acetylcholine (ACh) and serotonin (5-HT) in BSC cells. Results suggested that D-Asp activated receptor channels independently of ACh and 5-HT. Ten minute bath application of 5-HT was found to potentiate D-Asp current responses, likely through activation of a protein kinase C (PKC)-dependent mechanism, suggesting that D-Asp induced currents may be subject to synaptic plasticity associated with learning. While the identity of the putative D-Asp receptor remains elusive, the current work has advanced our understanding of the role D-Asp may play in the nervous system. These results should provide the groundwork for future studies aimed at identifying this unknown receptor channel, as well as investigation of the potential relationship of D-Asp receptor modulation to learning and memory in Aplysia, which may have relevance in higher organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological evidence that D-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons.

D-Aspartate (D-Asp) activates an excitatory current in neurons of Aplysia californica. Although D-Asp is presumed to activate a subset of L-glutamate (L-Glu) channels, the identities of putative d-Asp receptors and channels are unclear. Whole cell voltage- and current-clamp studies using primary cultures of Aplysia buccal S cluster (BSC) neurons were executed to characterize D-Asp-activated ion...

متن کامل

D - Aspartate activates a current distinct from ionotropic 1 glutamate receptor currents in Aplysia californica neurons 2

18 D-Aspartate (D-Asp) activates an excitatory current in neurons of Aplysia californica. 19 While D-Asp is presumed to activate a subset of L-glutamate (L-Glu) channels, the 20 identities of putative D-Asp receptors and channels are unclear. Whole cell voltage and 21 current clamp studies using primary cultures of Aplysia buccal S cluster (BSC) neurons 22 were executed to characterize D-Asp-ac...

متن کامل

Pharmacological evidence that D-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica

D-Aspartate (D-Asp) activates a nonspecific cation current of unknown identity independent of L-glutamate (L-Glu) in neurons of Aplysia californica. Whole-cell voltage clamp studies were conducted using primary cultures of Aplysia buccal S cluster (BSC) neurons to characterize these receptor channels pharmacologically. The N-methyl-D-aspartate receptor (NMDAR) coagonist glycine potentiated D-As...

متن کامل

A novel pyridoxal 5'-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system.

D-aspartate (D-Asp) is found in specific neurons, transported to neuronal terminals and released in a stimulation-dependent manner. Because D-Asp formation is not well understood, determining its function has proved challenging. Significant levels of D-Asp are present in the cerebral ganglion of the F- and C-clusters of the invertebrate Aplysia californica, and D-Asp appears to be involved in c...

متن کامل

Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents.

We have isolated the cDNA for a tyrosine kinase receptor that is expressed in the nervous system of Aplysia californica and that is similar to the vertebrate insulin receptor. Binding studies and immunocytochemical staining show that the receptor is abundant in the bag cell neurons. Application of vertebrate insulin to clusters of bag cell neurons stimulates the phosphorylation of the receptor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015